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Abstract
In this paper we present the Darboux transformation for the generalized
Heisenberg magnet (GHM) model based on the general linear Lie group GL(n)

and construct multi-soliton solutions in terms of quasideterminants. Further
we relate the quasideterminant multi-soliton solutions obtained by means of
Darboux transformation with those obtained by the dressing method. We also
discuss the model based on the Lie group SU(n) and obtain explicit soliton
solutions of the model based on SU(2).

PACS numbers: 11.10.Nx, 02.30.Ik

1. Introduction

During the past decades, there has been an increasing interest in the study of classical and
quantum integrability of the Heisenberg ferromagnet (HM) model [1–15]. The Heisenberg
ferromagnet (HM) model based on Hermitian symmetric spaces has been studied in
[11–14]. The integrability of the HM model based on SU(2) via the inverse scattering method
is presented in [2, 3] and its SU(n) generalization is studied in [4]. The integrability of a
generalized HF (GHM) model based on the general linear Lie group GL(n) via Lax formalism
has been investigated in [1]. In this paper we present the Darboux transformation of the GHM
model based on the general linear group GL(n) with Lie algebra gl(n) and calculate multi-
soliton solutions in terms of quasideterminants. We also establish the relation between the
Darboux transformation and the well-known dressing method [16]. In the last section, we
discuss the model-based SU(n) and calculate an explicit expression of the single-soliton
solution of the HM model based on the Lie group SU(2) using Darboux transformation.

The Hamiltonian of the GHM model is defined by [1]

H = 1
2 Tr((∂xU)T (∂xU)), (1.1)
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where ‘T ’ is transpose and U(x, t) is a matrix-valued function which takes values in the Lie
algebra gl(n) of the general linear group GL(n). The corresponding equation of motion can
be expressed as

∂tU = {H, ∂xU}. (1.2)

Equation (1.2) can be written as

∂tU = [
U, ∂2

xU
]
, (1.3)

where ∂x = ∂
∂x

and ∂t = ∂
∂t

. Let us assume that U(x, t) is diagonizable, i.e.

U = gT g−1, (1.4)

where g ∈ GL(n) is a matrix function of (x, t) and T is a n × n constant matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 0 · · · 0 0 0 · · · 0 0
0 c1 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...

0 0 · · · c1 0 0 · · · 0 0
0 0 · · · 0 c2 0 · · · 0 0
0 0 · · · 0 0 c2 · · · 0 0
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.5)

where 1 � p � n and c1, c2 ∈ R (or C). From equations (1.4) and (1.5), we have

[U, [U, [U,χ ]]] = c2 [U,χ ] , (1.6)

for an arbitrary matrix function χ and c = c1 − c2 �= 0. Since

∂xU ≡ Ux = [∂xgg−1, U ], (1.7)

it implies

[U, [U,Ux]] = c2Ux. (1.8)

The equation of motion (1.3) can also be written as the zero-curvature condition, i.e.[
∂x − 1

(1 − λ)
U, ∂t − c2

(1 − λ)2
U − 1

(1 − λ)
[U,Ux]

]
= 0. (1.9)

The above zero-curvature condition (1.9) is equivalent to the compatibility condition of the
following Lax pair:

∂x�(x, t; λ) = 1

(1 − λ)
U(x, t)�(x, t; λ) (1.10)

∂t�(x, t; λ) =
(

c2

(1 − λ)2
U +

1

(1 − λ)
[U,Ux]

)
�(x, t; λ), (1.11)

where λ is a real (or complex) parameter and � is an invertible n × n matrix-valued function
belonging to GL(n).

In the next section, we define the Darboux transformation on matrix solutions � of the Lax
pair (1.10)–(1.11). To write down the explicit expressions for matrix solutions of the GHM
model, we will use the notion of the quasideterminant introduced by Gelfand and Retakh
[17–21].
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Let X be an n×n matrix over a ring R (noncommutative, in general). For any 1 � i, j � n,
let ri be the ith row and cj be the j th column of X. There exist n2 quasideterminants denoted
by |X|ij for i, j = 1, . . . , n and are defined by

|X|ij =
∣∣∣∣∣
Xij c i

j

r
j

i xij

∣∣∣∣∣ = xij − r
j

i (Xij )−1ci
j , (1.12)

where xij is the ij th entry of X, r
j

i represents the ith row of X without the j th entry, c i
j

represents the j th column of X without the ith entry and Xij is the submatrix of X obtained
by removing from X the ith row and the j th column. The quasideterminats are also denoted
by the following notation. If the ring R is commutative, i.e. the entries of the matrix X all
commute, then

|X|ij = (−1)i+j det X

det Xij
. (1.13)

For a detailed account of quasideterminants and their properties see e.g. [17–21]. In this
paper, we will consider only quasideterminants that are expanded about an n × n matrix over
a commutative ring. Let(

A B

C D

)
(1.14)

be a block decomposition of any K ×K matrix where the matrix D is n×n and A is invertible.
The ring R in this case is the (noncommutative) ring of n×n matrices over another commutative
ring. The quasideterminant of K ×K matrix expanded about the n×n matrix D is defined by∣∣∣∣∣A B

C D

∣∣∣∣∣ = D − CA−1B. (1.15)

The quasideterminants have found various applications in the theory of integrable systems,
where the multisoliton solutions of various noncommutative integrable systems are expressed
in terms of quasideterminants (see e.g. [22–30]).

2. Darboux transformation

The Darboux transformation is one of the well-known methods of obtaining multi-soliton
solutions of many integrable models [31–33]. We define the Darboux transformation on the
matrix solutions of the Lax pair (1.10 )–(1.11), in terms of an n×n matrix D(x, t, λ), called the
Darboux matrix. For a general discussion on the Darboux matrix approach, see e.g. [34–39].
The Darboux matrix relates the two matrix solutions of the Lax pair (1.10)–(1.11) in such a
way that the Lax pair is covariant under the Darboux transformation. The onefold Darboux
transformation on the matrix solution of the Lax pair (1.10)–(1.11) is defined by

�[1](x, t; λ) = D(x, t, λ)�(x, t; λ), (2.1)

where D(x, t, λ) is the Darboux matrix. For our case, we can make the following ansatz

D(x, t, λ) = λI − M(x, t), (2.2)

where M(x, t) is an n × n matrix function and I is an n × n identity matrix. The new solution
�[1](x, t; λ) satisfies the following Lax pair, i.e.

∂x�[1](x, t; λ) = 1

1 − λ
U [1]�[1](x, t; λ), (2.3)

3
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∂t�[1](x, t; λ) =
(

c2

(1 − λ)2
U [1] +

1

1 − λ
[U [1], Ux[1]]

)
�[1](x, t; λ), (2.4)

where U [1] satisfies the equation of motion (1.3). By operating ∂x and ∂t on equation (2.1)
and equating the coefficients of different powers of λ, we get the following transformation on
the matrix field U

U [1] = U + Mx, (2.5)

and the following conditions which M is required to satisfy

Mx(I − M) = [U,M], (2.6)

Mt(I − M)2 = [c2U + [U,Ux],M] + M[U,Ux]M − [U,Ux]M2. (2.7)

One can solve equations (2.6–2.7) to obtain an explicit expression for the matrix function
M(x, t). An explicit expression for M(x, t) can be found as follows.

Let us take n distinct real (or complex) constant parameters λ1, . . . , λn ( �= 1). Also take n
constant column vectors e1, e2, . . . , en and construct an invertible non-degenerate n×n matrix
function �(x, t)

�(x, t) = (�(λ1)e1, . . . , �(λn)en) = (θ1, . . . , θn). (2.8)

Each column θi = �(λi)ei in the matrix � is a column solution of the Lax pair (1.10)–(1.11)
when λ = λi and i = 1, 2, . . . , n, i.e.

∂xθi = 1

1 − λi

Uθi, (2.9)

∂tθi =
(

c2

(1 − λi)2
U +

1

1 − λi

[U,Ux]

)
θi . (2.10)

Let us take an n×n invertible diagonal matrix with entries being eigenvalues λi corresponding
to the eigenvectors θi

� = diag(λ1, . . . , λn). (2.11)

The n × n matrix generalization of the Lax pair (2.9)–(2.10) will be

∂x� = U�(I − �)−1, (2.12)

∂t�i = c2U�(I − �)−2 + [U,Ux]�(I − �)−1. (2.13)

The n × n matrix � is a particular matrix solution of the Lax pair (2.9)–(2.10) with � being
a matrix of particular eigenvalues. In terms of a particular matrix solution � of the Lax pair
(2.9)–(2.10), we make the following choice of the matrix M(x, t):

M(x, t) = ���−1. (2.14)

Our next step is to check that equation (2.14) is a solution of equations (2.6)–(2.7). In order
to show this, we first operate ∂x on equation (2.14) to get

∂xM = ∂x(���−1),

= (∂x�)��−1 + ��∂x(�
−1),

= U�(I − �)−1��−1 − ���−1U�(I − �)−1�−1,

= −U + �(I − �)�−1j+�(I − �)−1�−1,

= −U + (I − M)U(I − M)−1, (2.15)
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which is equation (2.6). Similarly when we operate ∂t on (2.14), we get

∂tM = ∂t (���−1)

= (∂t�)��−1 + ���∂t(�
−1)

= (c2U�(I − �)−2 + [U,Ux]�(I − �)−1)��−1

− ���−1(c2U�(I − �)−2 + [U,Ux]�(I − �)−1)�−1, (2.16)

which is equation (2.7). This shows that the choice (2.14) of the matrix M satisfies equations
(2.6)–(2.7). In other words we can say that if the collection (�,U) is a solution of the Lax
pair (1.10)–(1.11) and the matrix M is defined by (2.14), then (�[1], U [1]) defined by (2.1)
and (2.5), respectively, is also a solution of the same Lax pair. Therefore, we say that

�[1] = (λI − ���−1)�,

U [1] = (I − ���−1)U(I − ���−1)−1

is the required Darboux transformation on the solution � to the Lax pair (1.10)–(1.11) and U
to the equation of motion (1.3), respectively.

3. Quasideterminant solutions

We have shown that the matrix M = ���−1 satisfies the conditions (2.6)–(2.7). Therefore,
the onefold Darboux transformation (2.1) can also be written in terms of quasideterminants as

�[1] ≡ D(x, t; λ)� = (
λI − �1�1�

−1
1

)
�,

=
∣∣∣∣ �1 �

�1�1 λ�

∣∣∣∣ . (3.1)

The above equation defines the Darboux transformation on the matrix solution � of the Lax
pair (1.10)–(1.11). The corresponding onefold Darboux transformation on the matrix field U
is

U [1] = (
I − �1�1�

−1
1

)
U

(
I − �1�1�

−1
1

)−1
,

=
∣∣∣∣∣ �1 I

�1 (I − �1) 0

∣∣∣∣∣ U
∣∣∣∣∣ �1 I

�1 (I − �1) 0

∣∣∣∣∣
−1

. (3.2)

We write the twofold Darboux transformation on � as

�[2] ≡ D(x, t; λ)�[1] = λ�[1] − �2[1]�2�
−1
2 [1]�[1]

= λ
(
λI − �1�1�

−1
1

)
�

− (
�2�2 − �1�1�

−1
1 �2

)
�2

(
�2�2 − �1�1�

−1
1 �2

)−1 (
λI − �1�1�

−1
1

)
�,

=

∣∣∣∣∣∣∣
�1 �2 �

�1�1 �2�2 λ�

�1�
2
1 �2�

2
2 λ2�

∣∣∣∣∣∣∣ . (3.3)

Similarly the expression for the twofold Darboux transformation on the matrix field U is

U [2] = �2[1] (I − �2) �−1
2 [1]U [1]

(
�2[1] (I − �2) �−1

2 [1]
)−1

,

= (
�2�2 − �1�1�

−1
1 �2

)
(I − �2)

(
�2�2 − �1�1�

−1
1 �2

)−1

× (
I − �1�1�

−1
1

)
U

(
I − �1�1�

−1
1

)−1

×
( (

�2�2 − �1�1�
−1
1 �2

)
(I − �2)

(
�2�2 − �1�1�

−1
1 �2

)−1
)−1

,

5
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=
∣∣∣∣∣∣

�1 �2 I

�1 (I − �1) �2 (I − �2) 0

�1 (I − �1)
2 �2 (I − �2)

2 0

∣∣∣∣∣∣
× U ×

∣∣∣∣∣∣
�1 �2 I

�1 (I − �1) �2 (I − �2) 0

�1 (I − �1)
2 �2 (I − �2)

2 0

∣∣∣∣∣∣
−1

. (3.4)

The result can be generalized to obtain N-fold Darboux transformation on matrix solution
� as

�[N ] =

∣∣∣∣∣∣∣∣∣∣∣∣

�1 �2 · · · �N �

�1�1 �2�2 · · · �N�N λ�

�1�
2
1 �2�

2
2 · · · �N�2

N λ2�

...
...

. . .
...

...

�1�
N
1 �2�

N
2 · · · �N�N

N λN�

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.5)

Similarly the expression for U [N ] is

U [N ] =

∣∣∣∣∣∣∣∣∣∣∣∣

�1 �2 · · · �N I

�1 (I − �1) �2 (I − �2) · · · �N (I − �N) 0
�1 (I − �1)

2 �2 (I − �2)
2 · · · �N (I − �N)2 0

...
...

. . .
...

...

�1 (I − �1)
N �2 (I − �2)

N · · · �N (I − �N)N 0

∣∣∣∣∣∣∣∣∣∣∣∣

× U ×

∣∣∣∣∣∣∣∣∣∣∣∣

�1 �2 · · · �N I

�1 (I − �1) �2 (I − �2) · · · �N (I − �N) 0
�1 (I − �1)

2 �2 (I − �2)
2 · · · �N (I − �N)2 0

...
...

. . .
...

...

�1 (I − �1)
N �2 (I − �2)

N · · · �N (I − �N)N 0

∣∣∣∣∣∣∣∣∣∣∣∣

−1

. (3.6)

We now relate the quasideterminant solutions of GHM with the solutions obtained by the
dressing method and the inverse scattering method. For this purpose, we proceed as follows.
From the definition of the matrix M, we have

M� = ��. (3.7)

Let θi and θj be the column solutions of the Lax pair (1.10)–(1.11) when λ = λi and λ = λj ,
respectively, i.e.

Mθi = λiθi, i = 1, 2, . . . , p

Mθj = λjθj , j = p + 1, p + 2, . . . , n.
(3.8)

Now we take λi = μ and λj = μ̄, and we may write the matrix M as

M = μP + μ̄P ⊥, (3.9)

where P is the Hermitian projector i.e. P † = P . The projector P satisfies P 2 = P and
P ⊥ = 1 − P . The projector P is the Hermitian projection on a complex space and P ⊥ is the
projection on an orthogonal space. Now equation (3.9) can also written as

M = (μ − μ̄) P + μ̄I, (3.10)

where the Hermitian projector can be expressed as

P = θi

(
θ
†
i , θi

)−1
θ
†
i . (3.11)

6
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The onefold Darboux transformation (3.1) on the matrix solution � can also be expressed in
terms of projector P as

�[1] ≡ D(x, t; λ)� =
(

I − μ − μ̄

λ − μ̄
P

)
�, (3.12)

where D(x, t; λ) is the rescaled Darboux-dressing function, i.e. D(x, t; λ) = (λ − μ)−1

D(x, t; λ). Similarly the N-fold Darboux transformation (3.5) on the matrix solution � can
also be written as (take P [1] = P )

�[N ] =
N−1∏
k=0

(
I − μN−k − μ̄N−k

λ − μ̄N−k

P [N − k]

)
�. (3.13)

Now we can express the N-fold Darboux transformation (3.6) on the matrix field U that can
be written as

U [N ] =
N−1∏
k=0

(
I − μN−k − μ̄N−k

1 − μ̄N−k

P [N − k]

)
U

N−1∏
l=1

(
I − μ̄l − μl

1 − μ̄l

P [l]

)
, (3.14)

and the Hermitian projector is defined as

P [k] = θi[k]
(
θ
†
i [k], θi[k]

)−1
θ
†
i [k]. (3.15)

Expressions (3.13) and (3.14) can also be written as the sum of K terms [27]:

�[N ] =
N−1∑
k=0

(
I − 1

λ − μ̄k

Rk

)
�, (3.16)

and

U [N ] =
N−1∑
k=0

(
I − 1

1 − μ̄k

Rk

)
U

N−1∑
l=0

(
I − 1

1 − μ̄l

Rl

)−1

, (3.17)

where

Rk =
N−1∑
l=0

(μl − μ̄k)θ
(k)
i

(
θ

(k)†
i , θ

(l)
i

)−1
θ

(l)†
i . (3.18)

4. The explicit solutions of the GHM model

In this section, we calculate explicit expression of the soliton solution. First of all we will
study the GHM model based on SU(n). In this case, the spin function U takes values in the Lie
algebra su(n) so that one can decompose the spin function into components U = UaT a , and
T a, a = 1, 2, . . . , n2 are anti-Hermitian n × n matrices with normalization Tr(T aT b) = 1

2δab

and are the generators of the SU(n) in the fundamental representation satisfying the algebra

[T a, T b] = f abcT c, (4.1)

where fabc are the structure constants of the Lie algebra su(n). For any X ∈ su(n), we write
X = XaT a and Ua = −2 Tr(UT a).

The matrix-field U belongs to the Lie algebra su(n) of the Lie group SU(n); therefore,

U † = −U, Tr(U) = 0. (4.2)

7
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Equations (2.1)–(2.2) and (2.5) define a Darboux transformation for the GHM model based on
the Lie group SU(n). The new solution of the equation of motion (1.3) U [1] must be su(n)
valued, i.e.

U †[1] = −U [1], Tr(U [1]) = 0; (4.3)

therefore, we have the following conditions on the matrix M:

M† = −M, Tr(M) = 0. (4.4)

In other words we want to make specific M to satisfy the (4.4). This can be achieved if we
choose the particular solutions θi at λ = λi ; let us first calculate

∂x

(
θ
†
i θj

) = (
∂xθ

†
i

)
θj + θ

†
i

(
∂xθj

)
= (1 − λ̄i)

−1θ
†
i U

†θj + (1 − λj )
−1θ

†
i Uθj ; (4.5)

using equation (4.2) equation (4.5) becomes

∂x

(
θ
†
i θj

) = 0, (4.6)

when λi �= λj (i.e. λ̄i = λj ). Similarly we can check

∂t

(
θ
†
i θj

) = 0. (4.7)

From the definition of the matrix M, we have

θ
†
i (M

† + M)θj = (λ̄i + λj )θ
†
i θj , (4.8)

when λi �= λj and then expression (4.8) implies

θ
†
i θj = 0. (4.9)

The column vectors θi are linearly independent and equation (4.9) holds everywhere.
For the HM model based on SU(n), the constant matrix (1.5) becomes

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − 2
n

0 · · · 0 0 0 · · · 0 0
0 − 2

n
· · · 0 0 0 · · · 0 0

...
...

...
...

...
...

...
...

0 0 · · · − 2
n

0 0 · · · 0 0
0 0 · · · 0 − 2

n
0 · · · 0 0

0 0 · · · 0 0 − 2
n

· · · 0 0
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 − 2
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.10)

Then U2 becomes

U 2 = 4(n − 1)

n2
I +

2(n − 2)

n
U. (4.11)

These are the constraints given in [4]. For the construction of explicit soliton solution for the
SU(n) HM model, we construct the matrix M by defining a Hermitian projector P. For this
case, we take the seed solution to be

U0 ≡ U = i

⎛
⎜⎝

a1

. . .

an

⎞
⎟⎠ , (4.12)

8
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where ai are real constants and
∑n

i=1 ai = 0. The corresponding solution of the Lax pair is
expressed in the block diagonal matrix:

�(x, t; λ) =
(

Wp(λ) O

O Wn−p(λ)

)
, (4.13)

where

Wp(λ) =

⎛
⎜⎝

eiω1(λ)

. . .

eiωp(λ)

⎞
⎟⎠ (4.14)

and

Wn−p(λ) =

⎛
⎜⎝

eiωp+1(λ)

. . .

eiωn(λ)

⎞
⎟⎠ (4.15)

are p × p and (n − p) × (n − p) matrices, respectively, and

ωi(λ) = ai

(
1

1 − λ
x +

4

(1 − λ)2 t

)
. (4.16)

Now define a particular matrix solution � of the Lax pair as

� = (�(μ)L1, �(μ̄)L2), (4.17)

where L1 is an n × p constant matrix of p column vectors and L2 is the orthogonal
complementary n × (n − p) matrix of (n − p) column vectors. The columns of L1 span
a p-dimensional subspace U of Cn, and those of L2 span the orthogonal subspace V. The
projector P is completely characterized by the two subspaces U = Im P and V = Ker P

given by the condition P ⊥U = 0 and PV = 0. Let us write L1 = (
A

B

)
and L2 = (

C

D

)
, where

A,B,C and D are constant p × p, (n − p) × n, p × (n − p) and (n − p) × (n − p) constant
matrices, respectively. Given this, the n × n matric � is given by

� =
(

Wp(μ)A Wp(μ̄)C

Wn−p(μ)B Wn−p(μ̄)D

)
. (4.18)

We now define the projector P in terms of the matrix � = �(μ)L1 = (θ1, . . . , θp) given by

� = (
θ1, . . . , θp

)
=

(
Wp(μ)A

Wn−p(μ)B

)
.

The projector is thus given by

P =
(

Wp(μ)A�A†W
†
p(μ̄) Wp(μ)A�B†W

†
n−p(μ̄)

Wn−p(μ)B�A†W
†
p(μ̄) Wn−p(μ)B�B†W

†
n−p(μ̄)

)
, (4.19)

where �−1 = A†W
†
p(μ̄)Wp(μ)A + B†W

†
n−p(μ̄)Wn−p(μ)A. The Darboux matrix D(λ) can

now be constructed to give an explicit soliton solution of the SU(n) HM model. To elaborate
the result more explicitly, we proceed with the example of the SU(2) HM model.

For the SU(2) model, equations (4.10) and (4.11) become

T =
(

1 0
0 −1

)
. (4.20)

9
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Then U2 becomes

U 2 = I. (4.21)

The Lax pair (1.10)–(1.11) for the SU(2) model can be written as

∂x�(x, t; λ) = 1

(1 − λ)
U(x, t)�(x, t; λ), (4.22)

∂t�(x, t; λ) =
(

4

(1 − λ)2
U +

2

(1 − λ)
UUx

)
�(x, t; λ). (4.23)

If we take a trivial solution (as seed solution), single soliton and multi-soliton solutions can
be obtained by Darboux transformation as explained above.

We take the seed solution to be

U0 ≡ U =
(

i 0
0 −i

)
. (4.24)

The corresponding solution of the linear system (4.22)–(4.23) can be written as

�(x, t; λ) =
(

ei( 1
(1−λ)

x+ 4
(1−λ)2

t) 0

0 e−i( 1
(1−λ)

x+ 4
(1−λ)2

t)

)
. (4.25)

Taking λ1 = μ and λ2 = μ̄, the constant matrix � is given by

� =
(

μ 0
0 μ̄

)
, (4.26)

and the corresponding 2 × 2 matrix solution � becomes

� ≡ (θ1, θ2) =
(

e
i( 1

(1−μ)
x+ 4

(1−μ)2
t)

e
i( 1

(1−μ̄)
x+ 4

(1−μ̄)2
t)

−e
−i( 1

(1−μ)
x+ 4

(1−μ)2
t)

e
−i( 1

(1−μ̄)
x+ 4

(1−μ̄)2
t)

)
. (4.27)

The matrix M is given by

M = ���−1,

= 1

eu + e−u

(
μ eu + μ̄ e−u (μ̄ − μ) eiv

(μ̄ − μ) e−iv μ̄ eu + μ e−u

)
, (4.28)

where the functions u(x, t) and v(x, t) are defined by

u(x, t) = i

(
1

(1 − μ)
− 1

(1 − μ̄)

)
x + 4i

(
1

(1 − μ)2
− 1

(1 − μ̄)2

)
t,

v(x, t) =
(

1

(1 − μ)
+

1

(1 − μ̄)

)
x + 4

(
1

(1 − μ)2
+

1

(1 − μ̄)2

)
t.

(4.29)

Let us take the eigenvalue to be μ = eiθ . Expression (4.28) then becomes

M =
(

cos θ + i sin θ tanh u −i (sin θ sech u) eiv

−i (sin θ sech u) e−iv cos θ − i sin θ tanh u

)
, (4.30)

and the corresponding Darboux matrix D(λ) in this case is

D(λ) =
(

λ − cos θ − i sin θ tanh u i(sin θ sech u) eiv

i(sin θ sech u) e−iv λ − cos θ + i sin θ tanh u

)
. (4.31)

Comparing the above equation with (3.12), we find the following expression for the projector

P =
(

2 eusech u −2 eivsech u

−2 e−ivsech u 2 e−usech u

)
. (4.32)

10
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Using (3.2) and (4.24), we get

U [1] =
(

iU3 U+

−U− −iU3

)
, (4.33)

where

U3 = 1 − (1 + cos θ) sech2u,

U+ ≡ U− = −i eiv [(1 + cos θ) tanh u + i sin θ ] sech u.
(4.34)

From equation (4.34), we see that U †[1] = −U [1] and Tr(U [1]) = 0. Therefore, equation
(4.34) is an explicit expression of the single-soliton solution of the HM model based on SU(2)

obtained by using Darboux transformation. Similarly one can calculate an explicit expression
for the multi-soliton solution of the model. Expression (4.34) is similar to the expression of
the single soliton given in [2].

5. Concluding remarks

In this paper, we have studied the GHM model based on the general linear Lie group GL(n)

and expressed the multi-soliton solutions in terms of the quasideterminant using the Darboux
transformation defined on the solution of the Lax pair. We have also established equivalence
between the Darboux matrix approach and Zakharov–Mikhailov’s dressing method. In the last
section, we have reduced the GHM model into the HM model based on SU(n) and calculated
an explicit expression for the single-soliton solution. It would be interesting to study the GHM
models based on Hermitian symmetric spaces. We shall address this problem in a separate
work.
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